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ABSTRACT

This Final Report to AFOSR 87-0237, "Navier-Stokes Simulation of Boundary-Layer

Transition" describes our successful efforts to computationally model the receptivity of the

laminar boundary layer on a semi-infinite flat plate with an elliptic leading edge by a spatial

simulation. The incompressible flow is simulated by solving the governing full Navier-Stokes

equations in general curvilinear coordinates by a finite-difference method. First, the steady

basic-state solution is obtained in a transient approach using spatially varying time steps. Then,

small-amplitude acoustic disturbances of the freestream velocity are applied as unsteady

boundary conditions, and the governing equations are solved time-accurately to evaluate the

spatial and temporal developments of the perturbation leading to instability waves (Tollmien-

Schlichting waves) in the boundary layer. The effect of leading-edge radius on receptivity is

determined.

The work has been and continues to be closely coordinated with the experimental

program of Professor William Saric, also at Arizona State University, examining the same

problems. Comparisons with the experiments at Arizona State University are necessary and an

important integral part of this work.

Whenever appropriate, we will match our results from the spatial simulation with triple-

deck theory. This is an important aspect of the ongoing work.
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1. INTRODUCTION

In this Final Report, Section 2 contains a list of related experience and accomplishments

from this work. Section 3 presents results from work completed to date. The personnel involved
in this project are described in Section 4.

2. RELATED EXPERIENCE AND TECHNICAL ACCOMPLISHMENTS

In the past, 4 students were supervised, 7 publications were written, and 8 talks and

lectures were given.

Publications

1. "A Shear--Adaptive Solution of the Spatial Stability of Boundary Layers with Outflow
Conditions," H. Haj-Hariri and H.L. Reed, in preparation.

2. "Spatial Simulation of Boundary-Layer Transition," H.L. Reed, Invited paper, in
preparation for Appl. Mech. Rev.

3. "Report of Computational Group," H.L. Reed, in Transition in Turbines, NASA CP
2386, NASA Lewis Research Center, May 1984.

4. "Receptivity of the Boundary Layer on a Semi-Infinite Flat Plate with an Elliptic
Leading Edge," N. Lin, H.L. Reed, and W.S. Saric, Arizona State University, ASU
90006, Sept. 1989.

5. "Boundary-Layer Receptivity: Computations," N. Lin, H.L. Reed, and W.S. Saric,
Third International Congress of Fluid Mechanics, Cairo, Egypt, January 2-4, 1990.

6. "Boundary-Layer Receptivity: Navier-Stokes Computations," H.L. Reed, N. Lin, and
W.S. Saric, Invited Paper, in Proceedings of the Eleventh U.S. National Congress of
Applied Mechanics, ASME, New York, 1990.

7. "Navier-Stokes Simulations of Boundary-Layer Receptivity," H.L. Reed, Keynote
Speaker, 22nd Turbulence Symposium, National Aerospace Laboratory, Tokyo, July 25-
27, 1990.

Presentations

1. "Computational Simulation of Transition," H.L. Reed, ICASE Meeting of Stability
Theory, NASA/Langley Research Center, Nov. 21, 1986.

2. "Energy-Efficient Aircraft," H.L. Reed, Invited Talk, Society of Women Engineers,
Notre Dame, Nov. 9, 1988.

3. "A Shear-Adaptive Approach to Spatial Simulations of Transition," H. Haj-Hariri and

H.L. Reed, Bull. Amer. Phys. Soc., Vol. 33, No. 10, Nov. 1988.

4. "Boundary-Layer Receptivity: Computations," N. Lin, H.L. Reed, and W.S. Saric,
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Bull. Amer. Phys. Soc., Vol. 34, No. 10, Nov. 1989.

Post Doctoral Associates

H. Haj-Hariri, "Spatial Simulation of Transition," completed Spring 1988.

Ph.D. Students

N. Lin, "Boundary-Layer Receptivity to Acoustic Disturbances," expected Spring 1992.

T. Buter, "Boundary-Layer Receptivity to Vortical Disturbances," expected Spring 1992.

C. Lu, "Effect of Initial Conditions on Boundary-Layer Transition," expected Spring 1992.

MS Students

N. Lin, "Receptivity of the Boundary-Layer Flow over a Semi-Infinite Flat Plate with an
Elliptic Leading Edge," completed Fall 1989.

The technical accomplishments thus far are documented in the publications listed above.

A brief description follows.

"A Shear-Adaptive Solution of the Spatial Stability of Boundary Layers with Outflow
Conditions," H. Haj-Hariri and H.L. Reed, in preparation. This work outlines the
numerics and boundary conditions used in our spatial simulations of transition.

"Receptivity of the Boundary Layer on a Semi-Infinite Flat Plate with an Elliptic
Leading Edge," N. Lin, H.L. Reed, and W.S. Saric, Arizona State University Report
CEAS 90006, Sept. 1989. This report demonstrates the feasibility of numerically
studying the receptivity problem and establishes the platform upon which our
receptivity studies are based. This work represents the first successful numerical
treatment of the receptivity problem!

The basic accomplishments that are described in these publications can be outlined as

follows:

1. General, three-dimensional spatial stability code developed with curvature to
support the experiments and the computations

2. Full Navier Stokes, spatial-simulation numerics developed.

3. Two-dimensional basic-state flow over an elliptic-nosed flat plate established
including leading edge and curvature using full Navier Stokes.
4. Freestream disturbance field established for initial/boundary conditions.

5. Two-dimensional disturbance flow over an elliptic-nosed flat plate
established including leading edge and curvature using full Navier Stokes.
6. Correlated results of #5 with stability theory of #1.
7. Established platform for receptivity studies for unswept wings.
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3. COMPLETED WORK

Boundary-layer receptivity has been discussed in many different forms (Morkovin, 1978,

1983; Mack, 1977; Tani, 1980; to name a few) and has been distinguished by remaining quite

opaque. In fact, it is difficult to diagnose whether too little effort has been expended or too little

success has been made. However, transition to turbulence will never be successfully understood

without answering this fundamental problem (Saric, 1985). The basic question is how

freestream turbulence and acoustic signals enter the boundary layer and ultimately generate

unstable T-S waves. There is no simple or direct manner for this to happen except in the case of

acoustic waves incident on supersonic boundary layers (Mack, 1977). It has long been

speculated that the mechanism for freestream disturbances to enter the boundary layer is through

the leading-edge region. In this regard, the asymptotic analysis of Goldstein (1983a, 1983b) is

encouraging in that it appears to be the first step in analyzing the leading-edge/acoustic-wave

problem. The recent e..perimental work of Leehey and Shapiro (1980) and Gedney (1983) did

not focus on the leading edge, and their results have not been completely conclusive. The recent

work is summarized by Reshotko (1984) and Goldstein and Hultgren (1989). There is a definite

need to continue work in this area with an infusion of new ideas and techniques.

In our work, the receptivity of a flat-plate boundary layer to freestream disturbances was
investigated through the numerical solution of the Navier-Stokes equations in the leading-edge

region. By stipulating the plate to have finite curvature at the leading edge (a feature left out of

some unsuccessful receptivity models), the singularity there was removed and a new length scale
introduced. The particular geometry chosen was a semi-ellipse joined to a flat plate. The

Reynolds number, based on leading edge curvature, is to be varied parametrically along with the

aspect ratio of the ellipse in order to examine the stability of a wide variety of basic states. The

use of various aspect ratios covers the range from a sharp leading edge to a semi-circular leading

edge to a blunt leading edge.

The main feature of the numerical work here is the use of a body-fitted curvilinear

coordinate system to calculate the flow at the elliptic leading-edge region with fine resolution.
First, a basic-state solution was obtained by solving the governing equations for steady,

incompressible flow with a uniform freestream using a transient approach. Then the basic flow

was disturbed by applying time-dependent, forced perturbations as unsteady boundary

conditions. The unsteady flow and the temporal and spatial development of the perturbations
were determined by numerically solving the unsteady governing equations time accurately. An

implicit finite-difference method was used in the streamwise and normal directions and in time.

No artificial diffusion was used, yet the numerical methods were found to be robust and stable

with the use of reasonably small time steps.
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3.1 BASIC-STATE RESULTS

As preliminary results for presentation here, basic-state solutions for steady flow over a

semi-infinite flat plate were obtained for two test cases. In calculations, the minor radius of the

ellipse was used as a reference length L. The first case corresponds to a rather blunt leading

edge with aspect ratio (AR; ratio of major to minor axes) of 3; the second case to a relatively

sharp leading edge with aspect ratio 9. See Figures 1 and 2. In both cases, the Reynolds number

based on reference length is 2400. The length of the flat plate at the downstream end of the

computational box measured from the tip of the ellipse is 45L. The farfield boundary is located

at 36L which is 36 times the plate thickness or about 30 times the Blasius boundary-layer

thickness at the downstream boundary.

The steady-state flow solutions were obtained in a transient approach with a

nondimensional At of 0.007 x AR for the first case AR = 3 and a smaller value of At of 0.0008 x

AR for AR = 9. Altogether, 136 grid points were used in the strearwise direction with

approximately 10 grid points in the expected T-S wavelength. In the normal direction 80 grid
points were used. In both cases, the grid was stretched such that there were approximately 15

grid points in the boundary layer at the ellipse-flat-plate juncture. The convergence criteria was

set as 10-8 for maximum residual and absolute error in vorticity and velocity between two time-

iteration steps.

Velocity vectors are shown for the two cases in Figures 3 and 4. The velocity vector
profiles obtained near the leading edge have some overshoot of the freestream value due to the

acceleration over the convex curvature, the overshoot being more pronounced with the blunt

leading edge. These profiles verify that solutions obtained by using the boundary-layer

assumption or the infinitely sharp flat-plate assumption are missing vital information at the

leading edge and are not valid for actual leading edges with finite thickness. The profiles

gradually approach profiles with a slight adverse pressure gradient downstream.

Corresponding vorticity profiles at different streamwise locations are shown in Figures 5
and 6. Inflection points are clearly present at the leading-edge region. The pressure gradient

along the wall is related to the normal gradient of vorticity at the wall and is shown in Figures 7
and 9. Surface pressure coefficient (C) is then obtained by integrating this expression along the

wall; this is shown in Figures 8 and 10 along with the corresponding inviscid CP obtained by a

linear surface-panel method. The effect of leading-edge bluntness is illustrated in these figures.

The blunt AR = 3 leading edge has a sharp peak (minimum) in surface pressure before

recovering rapidly to the freestream pressure and approaching zero pressure gradient. The sharp

leading edge has a more rapid approach to the minimum which is smaller (in magnitude) than the

minimum in the blunt case. Both surface pressure distributions are close to the inviscid solution

except in the rapid pressure-recovery region near the leading edge.



H.L. Reed: Navier-Stokes Transition Simulations (AFOSR) page 5

Wall vorticity distributions for the two cases are displayed in Figures 11 and 12. The

maximum wall vorticity is 61.9 for the AR = 3 case and occurs at x = 0.12 at the leading edge.

For the AR = 9 case, the maximum is 80.5 and occurs at x = 0.09. At the leading edge, the wall

vorticity exhibits singularity-like behavior, which is found to be stronger for the AR = 9 case.

The blunt case vorticity has a minimum near the leading edge, indicating an approach to

separation, but no apparent minimum is observed for the sharp case. Wall vorticity predicted by

the boundary-layer assumption underestimates the downstream value.

Another important parameter in presenting the steady flow results is the displacement

thickness. Since velocity overshoots occur at the leading edge, the freestream velocity at the

boundary-layer edge required in the integration is taken to be the maximum tangential velocity.

The nondimensional displacement thickness 8* should vary as x1/2 according to boundary-layer

theory. 8*2 obtained in the present calculation is plotted as a function of x in Figures 13 and 14

and clearly demonstrates the above linear behavior in the downstream region. 5* is zero at the

stagnation point, remains small in the favorable pressure-gradient region, and rises rather rapidly

in the pressure recovery region where the boundary layer thickens. By linear continuation, the

location of the virtual leading edge can be approximated. The virtual leading edge occurs at x =

-6.0 for AR = 3 and at x = -1.8 for AR = 9; the virtual leading edge approaches the actual one as

the leading edge sharpens.

3.2 UNSTEADY-DISTURBANCE RESULTS
Two cases were completed, demonstrating the ability of the present numerical method to

perform unsteady time-accurate calculations to simulate receptivity to freestream fluctuations.

Both calculations were performed on the AR = 3 flat plate, with the unsteady boundary

conditions applied at the farfield being small time-harmonic oscillations of the streamwise

velocity with amplitude 10-4, well in the linear range and of the same order of the amplitudes

used by Saric in his recent experiments.

In case (1), the oscillations of the freestream streamwise velocity have dimensionless

frequency parameter F = 333 (= 2 ic v f / U. 2 x 106). Perturbations that eventually develop in the

flow will vary at constant forcing frequency, thus following F = constant lines with downstream

distance. For F = 333, this line passes above the instability loop according to linear parallel-flow

theory (in the stable region), but passes through a narrow unstable region according to some

experimental results.

In case (2), the frequency parameter F = 230, which is the value corresponding to the

critical point according to linear parallel-flow theory. Branch I of the neutral stability curve
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according to linear parallel-flow theory is located at x = 37.9 and the TS wavelength at that point

is 4.5. Branch II is at x = 56.2, which is out of the domain considered here.

For F = 333, instantaneous disturbance profiles vs. normal distance from the wall at every

streamwise location x are given in Figure 15, after 5 cycles of forcing. After 5 cycles of forcing,
when the majority of the flow (except at the region of the convecting disturbance wave front) has

become time-periodic (quasi-steady), the amplitude (magnitude) of these periodic perturbations

is determined from the last (5th) cycle. The amplitude vs. normal distance from the wall profiles

are plotted in Figure 16.
The amplitude of the streamwise perturbation velocity obtained after subtracting the

instantaneous Stokes-wave solution, at every streamwise location after x = 3.0 (the juncture of

the flat plate and the ellipse) is shown in Figure 17. The amplitude profiles develop into TS
wave amplitude profiles around x = 6.0. The receptivity, as defined by the ratio of TS wave

amplitude to sound amplitude is of order 1, the maximum being 1.7 at x = 14.05. This trend of

order I receptivity and the growth of disturbances outside the neutral curve of linear theory was

also observed in the experiments (at a higher Reynolds number and lower frequency) by Shapiro

(1977) and Leehey and Shapiro (1980). We attribute this to the pressure minimum and the

subsequent small adverse pressure gradient near the leading edge. Due to the presence of this

small adverse pressure gradient, the instability loop is expected to shift to the left and open up

similar to stability diagrams for Falkner-Skan flows.
For F = 230 instantaneous disturbance profiles after 4 periods of forcing, and disturbance

amplitude profiles (before the Stokes wave is subtracted) with respect to normal distance during

the fourth cycle are given in Figures 18 and 19. After the Stokes wave is subtracted, disturbance
profiles displayed in Figure 20 show clearly a transformation into TS wave profiles. The

wavelength is 4.5 and the wavespeed is 0.395, which are about the same as the TS wavelength

and wavespeed according to linear stability theory. The ratio of maximum amplitude of the TS
wave to the sound-wave amplitude is about 0.8, the maximum occurring at three grid points

between x = 20.58 and x = 21.39. Compared to the high-frequency case (1), the amplitudes of

the TS wave in this case are found to be smaller. We attribute this to the fact that the Branch I
neutral point for a lower value of F is farther downstream (according to linear stability theory).

3.3 CONCLUSIONS FROM COMPLETED WORK
A numerical code has been developed to solve both steady and unsteady two-dimensional

flow over a flat plate with an elliptic leading edge and finite thickness using the full

incompressible Navier-Stokes equations in curvilinear coordinates. The present time-accurate

code has allowed us to observe both the temporal and spatial initial development of the
instability (TS) wave in the boundary layer due to imposed, freestream, long-wavelength
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disturbances. This is the first successful attempt to numerically simulate receptivity to
freestream, time-harmonic oscillations on a realistic flat plate, offering possible explanations for

discrepancies between experiments and various simplified numerical and theoretical models.

Some of the important conclusions that can be inferred thus far are:

i) The experimental results of early growth of TS waves before the Branch I neutral-

stability point and order I receptivity are observed, and can be attributed to the adverse pressure

gradient existing near the blunt leading edge.
ii) The observance of TS wave growth with F = 333 is in accordance with some

experimental observations and indicates that the discrepancies in neutral stability curves between
linear stability theory and experiments at high frequencies can be due to small mean adverse

pressure gradients existing near the leading edge.
iii) The receptivity mechanism to freestream, time-harmonic, long-wavelength

oscillations, which has been observed in experiments is verified to some extent in this study and

can be described as follows:
A long-wavelength, streamwise velocity perturbation, which closely simulates a plane

sound wave travelling parallel to the plate in an incompressible limit, has to diffract at the
leading edge, which introduces spatial variations in fluctuations of both u' and v' components at

the leading edge (near the stagnation point), or, in other words, introduces unsteady fluctuations
in pressure that vary with tangential direction along the wall. This, in turn, generates fluctuating
vorticity at the leading edge, the majority of which is convected downstream in the boundary

layer. This convected vorticity wave soon matches or develops into instability waves (TS

waves) of the laminar boundary layer.
iv) Up to the periods of calculations presented here, interaction between the TS wave

and the travelling sound wave occurs only at the leading edge region.
v) Some qualitative features predicted by the theory of Goldstein (1983) are observed,

although the orders of receptivity differ. The quantitative measure of receptivity here, i.e. the
ratio of amplitude of the TS wave to that of the freestream disturbance, definitely depends on the

leading-edge radius of curvature, and hence the pressure gradient there.

4. RESOURCES AND PERSONNEL

The principal investigator for this work was Helen L. Reed, Associate Professor of

Mechanical and Aerospace Engineering. Professor Reed has spent the last nine years conducting
theoretical and computational research on problems of boundary-layer stability specifically

applied to the ACEE/LFC programs.

Nay Lin was the principle graduate student supported by this grant. He very successfully
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completed his MS thesis "Receptivity of the Boundary Layer on a Semi-Infinite Flat Plate with

an Elliptic Leading Edge," in the Fall of 1989.

Professor William S. Saric participated as a consultant to the program. He brought with
him fifteen years of experience conducting theoretical and experimental research on problems of

boundary-layer stability and transition. His research is closely coordinated with the

computational work.
One of the principal strengths of our team at Arizona State University is its broad skills in

analysis, computations, and experiments. We facilitate day-to-day communication between the
computational work and the experimental work through an IRIS 3030 Graphics Workstation.
The system, with state-of-the-art, real-time, three-dimensional, color-graphics software

(PLOT3D), is equipped with an extensive multi-user and multi-task environment with twelve

serial lines. Users are able to share the same data base or experimental information. This
provides the heart of the interaction of the analytical, computational, and experimental research.

In addition to the super computers at AFOSR facilities and Princeton/NSF Consortium,

the network includes access to the IBM 4341/VM and Harris/VS computers, the IBM 3090 Class
VI machine, and the Cray on campus as well as the MASSCOMP. The College of Engineering

at ASU is currently also equipped with several VAX/780 and VAX1785 minicomputers

exclusively for research purposes (each office and laboratory has a hard-wired RS232 interface).
These minicomputers are excellent systems for program development. The IRIS can access all
the features available in those minicomputers through the existing local area networking
(Ethernet) on the campus. Furthermore, the system can communicate directly with AFOSR
research facilities to share information through telephone couplings. The full array of computer

capabilities from super-mini to super-super was in place for the research.
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6. FIGURES



a. Generated C-grid

b. Enlarged view at the leading edge

Figure I. Generated grid over the semi-infinite flat plate; AR=3.



a. Generated C-grid

b. Enlarged view at the leading edge

Figure 2. Generated grid over the semi-infinite flat plate; AR=9.
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Figure 3. Steady state velocity vector profiles ; AR = 3, ReL = 2400.
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Figure 4. Steady state velocity vector profies ; AR = 9, ReL = 2400.
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Figure 5. Steady state vorticity profiles vs. normal distance;
AR = 3, ReL = 2400.



L LL

I I I

Y 0.00 X - 0.23 x - 7 x 3.14 K 5.87 x 8.59

a. Leading edge region.

X ,, S.00 X( - 11.85 X 15.71 X - 20.81 X - 27.!5 X - 35.44 X - 45.00

b. Flat plate region.

Figure 6. Steady state vorticity profiles vs. normal distance;
AR = 9, ReL = 2400.



0

CD

0

0

'-9.00 0'. 00 9.oo 1,8.00 27. 00 36. o qS. 00
x
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Figure 16. Perturbation amplitude profiles taken during the 6.t cy!cle at
consecutive downstream locations before the Stokes wave is subtracted;
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Figure 17. Amplitude profiles of streamwise perturbation velocity u' taken
during the fifth cycle at consecutive downstream locations after the Stokes
wave is subtracted; F = 325, as= 0.0001.
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Figure 20. Amplitude profiles of streamnwise perturbation velocity u' taken
during the fifth cycle at consecutive downstream locations after the Stokes
wave is subtracted; F = 230, at= 0.0001.
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